

## Controlling smoothness of thin platinum ALD films

Ritwik Bhatia:Ultratech-Cambridge Nanotech, Waltham, MA, USA Ralf Heilmann: Massachusetts Institute of Technology, Cambridge, MA, USA Alexander Bruccoleri: Izentis LLC, Cambridge, MA, USA Brandon Chalifoux: Massachusetts Institute of Technology, Cambridge, MA, USA

## Outline



- □ Motivation: X-Ray Diffraction Gratings
  - Improvement in grating performance
- □ Making the Pt thinner
  - Methods:
    - Deposition
    - Metrology
  - Data
- □ Summary

#### Soft X-Rays

Ultratech CNT

- Important questions in cosmology are addressed by analysis of the soft x-ray spectrum
  - Role of Active Galactic Nuclei in galaxy formation
  - Characterization of the Warm-Hot Intergalactic Medium and the missing baryon problem



# Critical Angle Transmission Grating **Ultratech CNT**



Grating equation:

 $m \lambda = p (\sin(\theta) + \sin(\beta_m)),$ m = diffraction order

**Blazing**:  $\beta_m \sim \theta$ 

**High reflectivity:**  $\theta < \theta_c$  = critical angle of total external reflection

Strawman: Silicon grating,  $\theta = 1.5^{\circ}$ p = 200 nmb = 40 nm

aspect ratio d/b = 150

Total external reflection  $\theta <$  $\theta_{c}$ 

 $\theta_{c} \uparrow \Rightarrow \theta \uparrow$ 

- m  $\uparrow$  (higher order peaks i.e. greater resolving power)
- Higher energy

 $\theta_{c}$  depends on (material,  $\lambda$ )

- $\theta_c \simeq 1.7^\circ$  for (Si,1nm)
- $\theta_c \simeq 2.4^\circ$  for (Pt,1nm)

Case for Pt ALD: increase  $\theta_c$  by conformally coating Si grating with Pt

## Manufacturing CAT Grating





## ALD Pt Coated CAT Grating





Higher order diffraction peaks => greater resolving power Access to higher energy (shorter wavelength)

#### Goal

# Ultratech CNT



#### Deposition:

**Experimental** 

- Savannah 200 (200mm dia reactor)
- 2" substrates of Si and Si-TOX at reactor center
- 120sec UV-O3 pre-clean
- Me<sub>3</sub>PtCpMe+O2 (270°C), Me3PtCpMe
  +O3 (150°C)
- Ozone 120mg/liter
- Measurement:
  - Ellipsometry thickness
  - 4-point probe resistivity/macroscopic continuity
  - XRR thickness, density, roughness
  - AFM roughness







## **Ellipsometry Validation**





- Good quality fit over wide spectral range (1.4-5.9eV)
- Fit parameters tightly bound
- Correlation between optical parameters and thickness is low
- Thickness from ellipsometry is about 4-6Å more than XRR





d:150 min

## Physical considerations

- Energetics:
  - Does Pt deposit on previously deposited Pt or on substrate?
  - Does deposited Pt tend to agglomerate into Pt particles vs remain as a film?

C: 90 min

- •Kinetics:
  - What is rate of surface diffusion/ agglomeration?
  - How does it compare to rate of deposition?

0:60 min

In-situ TEM at **650°C**, 10mbar "air"







## Routes to smoother, thinner films **Ultratech CNT**



# "Standard" (270°C, O<sub>2</sub> process) **Ultratech CNT**



Thickness increases linearly with number of cycles Resistivity increases super-exponentially  $\rightarrow$  percolation?

#### Percolation





## Ozone at 150°C





- O<sub>3</sub> film is continuous at lower thicknesses
- No sign of percolation threshold
- However, ~ 80Å resistivity suggests film quality is poorer
  - Xray Reflectivity is low
  - Residual carbon?

#### Ozone dose





- Increasing O<sub>3</sub> dose by 4X gives lowest resistivity
- Resistivity improvement is not as much for thicker film

## Buffer Layer (Al<sub>2</sub>O<sub>3</sub> vs ZrO<sub>2</sub>)





□ At 80cycles:

- Resistivity on ZrO2 is ~ 35% lower with 10Å thinner film
- □ At 145 cycles
  - Resistivity is similar for both surfaces

## ZrO<sub>2</sub> surface encourages faster nucleation and continuity

## Thickness of Al<sub>2</sub>O<sub>3</sub> layer





Pt nucleation enhancement on Al2O3 maintained to 3 cycles of Al2O3



- Improvement in "device" performance increase in critical angle for X-Ray CAT grating
- Percolation threshold reduced from ~ 5nm to less than 4nm for ozone process.
  - Film quality improvement required

□ Thin (3cycles) Al2O3 is adequate for improved Pt coalasence