

SELF ASSEMBLED MONOLAYERS

SAMS anatomy

- Head group
 - Affinity to substrate to induce chemisorbed surface reactions
 - High energy chemical bound (100 kJ/mol) provides molecular stability (thermal, chemical, mechanical)
- Tail group
 - Closed-packed structure driven by Van der Waals interaction between alkyl chains
- End or Functional group
 - Defines properties of monolayer, e.g., hydrophobicity/hydrophilicity, affinity to anchor with biological entities

Single organic monolayer from ordered molecular 2D assembly formed spontaneously by the chemisorption of the head group

SAMS precursors

Ultratech CNT

Key selection criteria

- Head group determined by substrate
 - Thiols (organosulfurs) for metals
 - Silanes for (trichlorosilane, alkylsilane) for oxides
 - Phosphonates, carboxylates...
- Functional group
 - Non-polar hydrophobic: e.g., -CH₃
 - Polar hydrophilic: -OH, -COOH

Thiols for SAMs on Au surfaces

DiBenedetto, S.A., et al., Adv. Mater., 2009. 21(14-15): 1407-1433.

Silanes on oxide surfaces

	FOTS	FDTS	DTS
Name	Tridecafluoro tetrahydrooctyl trichlrosilane	Heptadecafluoro tetrahydrodecyl trichlrosilane	Dodecyltrichlorosilane
Formula	$C_8H_4CI_3F_{13}Si$	$C_{10}H_4CI_3F_{17}Si$	$C_{12}H_{25}CI_3Si$
Gelest #	SIT 8174.0	SIH5841.0	SID4630.0
Price	\$28 / 10g	\$84 / 10g	\$10/10g
B.P.	84°C	216°C	120°C
Vap. Pr.	4.2 Torr at 70°C	1.7 Torr at 80°C	0.5-1 Torr @100°C

APPLICATIONS

Applications

Ultratech CNT

- Wetting control (hydrophobic, hydrophilic, oleophobic)
- Friction/anti-stiction/lubrication
- Nanostructure functionalization
- Building blocks for heterostructures
- OLED / Flexible electronics
- Cell adhesion/protein adsorption

Asay and al., Tribol. Lett., 2008. 29(1): p. 67-74.

19(20): p. 8331-8334.

Ultratech, FDTS on Pt ALD (119°)

Gurard-Levin, et al.. Annual Rev. of Analyt. Chem., 2008. 1: p. 767-800.

Con A

FOTS on Cotton

Deposition in Savannah S200 at 80°C, 10 min. exposure

In-situ QCM during ALD on SAMS

1. Avila, J. R. et al. Acs Appl Mater Inter 140721160005002 (2014).

- In-situ QCM measurements during oxide growth by ALD on vapordeposited alkanethiols
- Study in Savannah S200 with QCM integrated in lid
- Vapor deposited SAMS achieve ALD inhibition in min. vs days for solution-based SAMS

In-situ thickness during ALD oxides on thiol SAM

Idealized QCM signature during SAMS / ALD

Selective Area ALD

Fabrication steps of multi-segmented nanotubes using AAO, SAMS & ALD

Examples of TiO_2 / ZrO_2 segmented nanotubes deposited in AAO nano-termplate using OTS SAMS

Bae, C. et al. Multisegmented nanotubes by surface-selective atomic layer deposition. J. Mater. Chem. C 1, 621 (2012).

K. Nielsch's group, Hamburg U.

SAMS in plasmonic hot electron PV

1. Pelayo García de Arquer, F., Nanoscale 7, 2281–2288 (2015).

- Example of ALD / SAMS heterostructure using Savannah
- SAMS length control hot electron injection
- Open-circuit voltage function of SAMS dipole
- Short circuit current function of SAMS functionalization

TiO₂ band diagram and passivation effect of SAMS

Impact of SAMS length on injection efficiency, photon conversion efficiency and short circuit current

HARDWARE

SAMS kit specs

Systems	Savannah S100, 200 & 300
Max. # kits / tool	Up to 2
Substrate size	Up to 300 mm for \$300
Typical run time	5-20 min
Dose control	±0.5μmol
Precursor Temp	Up to 200°C
Accumulator temperature	 100°C with pressure gauge Up to 150°C (w/o gauge)
Dose pressure range	0-10 Torr with Baratron
Co-reactant	H ₂ O, ozone, air
Seed layers	ALD oxides and metals
Pump	Adixen 2021C2 with purge kit
Softw. Integration, end point control	Implemented in standard Savannah software
FDTS contact angle	>110°
FOTS angle	>105°
DTS angle	>100°

In-situ diagnostic

- Spectroscopic ellipsometry (Woollam M2000V)
- Quartz Crystal Microbalance
- Provide real-time sub-Å resolution and quick acquisition rate
- Ideal for thickness monitoring, rapid process optimization, growth characterization with multicomponent or heterogeneous films

In-situ SE and QCM data during AI_2O_3 run

In-situ SE and QCM on Savannah Gen2

Ultratech CNT data

RESULTS

DTS coating on ALD alumina

Water on Al_2O_3 and Al_2O_3 + DTS

- □ Precursor: Dodecyltricholorosilane (DTS)
- **\Box** Sample: Silicon with 20 nm ALD Al₂O₃
- □ Sample prep: none

Impact of reactant dose

DTS on SiO₂ Impact of seed layer

- □ Sample 10kÅ thermal SiO₂
- Deposit 1-10 cycles of ALD as a seed layer
- □ Vapor phase SAMS deposition for 10 min.

Significant increase of water contact angle using ALD seed layer followed by DTS

In-situ QCM characterization during FDTS growth

Expo Time [min]

In-situ QCM characterization during ALD on SAMS

ALD cycle #

Ultratech CNT

- ALD and SAMs provide a versatile set of solutions to coat & functionalize surfaces with organic and inorganic films
- Vapor-phase deposition of SAMS can be achieved in minutes and provides optimal coverage in high aspect ratio 3D nanostructures
- In-situ sensing (QCM, SE) provide unique opportunities to optimize both ALD and SAMs processes
- □ Vapor phase SAMS recipes developed in S200